

> Research Question

Can we establish a benchmark for ZO optimization in LLM fine-tuning, explore the overlooked optimization principles, and advance the current state of the art?

Methods using Zeroth-Order Optimization

• Randomized gradient estimator (RGE):

$$\hat{\nabla} f(\mathbf{x}) = \frac{1}{q} \sum_{i=1}^{q} \left[\frac{f(\mathbf{x} + \mu \mathbf{u}_i) - f(\mathbf{x} - \mu \mathbf{u}_i)}{2\mu} \mathbf{u}_i \right]$$

- ZO-SGD: ZO stochastic gradient descent, *i.e.* MeZO [1].
- ZO-SGD-Sign: ZO-SGD using <u>sign</u>-based gradient estimation
- ZO-SGD-MMT: ZO-SGD with momentum.
- ZO-SGD-Cons: ZO-SGD with <u>conservative</u> gradient update.
- ZO-Adam: ZO variant of the <u>Adam</u> optimizer.

Task Alignment Plays A Key Role for ZO

- Task Alignment with the template <CLS>SENTENCE. It was [terrible|great].<SEP> for SST2 dataset and another template <CLS>SENTENCE1?[Yes|No], SENTENCE2.<SEP> for RTE.
- RoBERTa-large model full-tuned w/ and w/o task alignment.

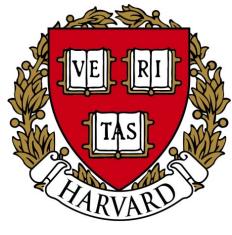

Method		SS	Г2	RTE			
	-	×	Difference	 Image: A second s	×	Difference	
FO-SGD	91.6	91.5	0.1	70.9	61.4	9.5	
ZO-SGD ZO-Adam	89.4 89.8	79.2 79.2	10.2 10.6	68.7 69.2	60.4 58.7	8.3 10.5	

Table 1: Test accuracy (%) of pre-trained Roberta-Large model fine-tuned on SST2 and RTE.

[1] Malladi et atl. "Fine-tuning language models with just forward passes"

Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark

Yihua Zhang^{1,*}, Pingzhi Li^{2,*}, Junyuan Hong^{3,*}, Jiaxiang Li^{4,*}, Yimeng Zhang¹, Wenqing Zheng³, Pin-Yu Chen⁵, Jason D. Lee⁶, Wotao Yin⁷, Mingyi Hong⁴, Zhangyang Wang³, Sijia Liu^{1,5,†}, Tianlong Chen^{2,8,9,†}

* Equal Contribution, [†] Correspondence ¹Michigan State University, ²UNC Chapel Hill, ³UT Austin, ⁴UMN Twin Cities, ⁵IBM Research, ⁶Princeton University, ⁷DAMO Academy Alibaba Group US, ⁸MIT, ⁹Harvard University

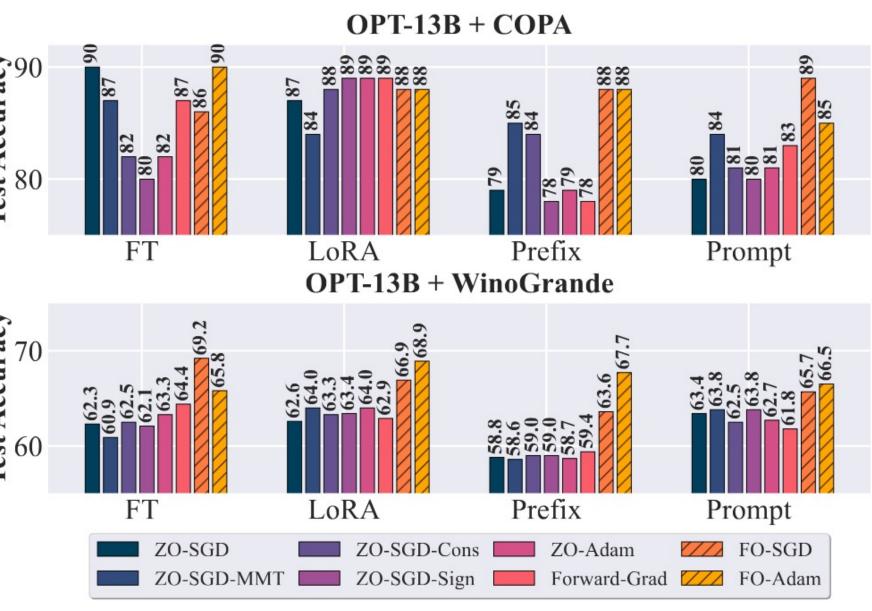
> A Pilot Study: LLMs ZO Fine-Tuning on SST2

•	
nation.	

SST2	Roberta-Large					OPT-1.3B				
	FT	LoRA	Prefix	Prompt	FT	LoRA	Prefix	Prompt		
FO-SGD	91.4	91.2	89.6	90.3	91.1	93.6	93.1	92.8		
Forward-Grad	90.1	89.7	89.5	87.3	90.3	90.3	90.0	82.4		
ZO-SGD	89.4	90.8	90.0	87.6	90.8	90.1	91.4	84.4		
ZO-SGD-MMT	89.6	90.9	90.1	88.6	85.2	91.3	91.2	86.9		
ZO-SGD-Cons	89.6	91.6	90.1	88.5	88.3	90.5	81.8	84.7		
ZO-SGD-Sign	52.5	90.2	53.6	86.1	87.2	91.5	89.5	72.9		
ZO-Adam	89.8	89.5	90.2	88.8	84.4	92.3	91.4	75.7		

 Table 2: Results of Roberta-Large and OPT-1.3B tuned on SST2.

Takeaway I: ZO-Adam seems to be the **most effective ZO method**: achieving the best performance in 4 out of 8 fine-tuning settings.


Takeaway II: Forward-grad is a competitive but previously overlooked method, especially in the full-tuning setting.

Takeaway III: ZO-SGD-Cons and ZO-SGD-MMT also demonstrate strong performance, while **ZO-SGD-Sign**, the simplest ZO optimization method, tends to be the weakest approach.

LLMs ZO Fine-Tuning on More Complex Tasks

Takeaway I: ZO-Adam and **ZO-SGD-MMT** exhibit exceptional stability across varied conditions, possibly due to variance-reduced techniques.

Takeaway II: The LoRA tuning method is consistently **robust to ZO algorithms**, providing a stable and reliable tuning approach in diverse settings.

Figure 1: Results of OPT-13B fine-tuned on COPA and WinoGrande with PEFT methods.

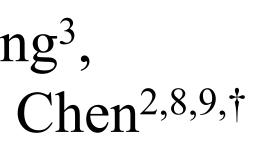
> Memory and Runtime Efficiency Analyses

Optimizer	Memory ↓	Consumed GPUs \Downarrow	Runtime Cost
ZO-SGD	29 GB	1 ×A100	1.8 s
ZO-SGD-Cons	29 GB	$1 \times A100$	4.2s
ZO-SGD-Sign	29 GB	$1 \times A100$	1.8 s
ZO-SGD-MMT	$53\mathrm{GB}$	$1 \times A100$	1.8 s
ZO-Adam	80 GB	$2 \times A100$	1.9s
Forward-Grad*	138 GB	$2 \times A100$	19.8s
FO-SGD	161 GB	$3 \times A100$	2.7s
FO-Adam	$257~\mathrm{GB}$	$4 \times A100$	2.8s

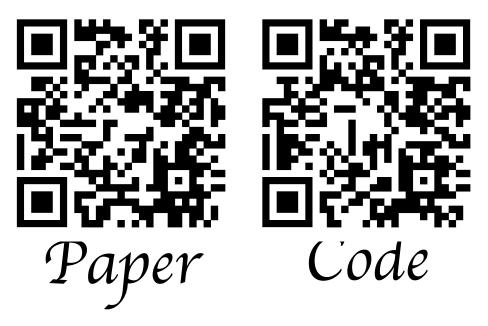
Table 3: Memory and runtime cost when fine-tuning the full OPT-1.3B model on MultiRC.

Extended Study to Improve ZO Fine-Tuning

					Memory (GB)		Accuracy (%)	
				ZO Layer #	Memory	Δ Memory	Accuracy	Δ Accuracy
Optimizer	Forward Pass #	SST2	WinoGrande	0 (FO-SGD)	24.29	11.07	91.22	1.98
MeZO ZO-SGD ($q = 26$)	$\begin{vmatrix} 1 \\ 26 \end{vmatrix}$	90.83 91.28	$55.5 \\ 55.7$	4 8 12	$23.33 \\ 22.01 \\ 20.43 \\ 12.22 \\ 20.43 \\ 12.22 \\ 20.43 \\ 12.22 \\ 20.43 \\ 20.4$	$10.11 \\ 8.79 \\ 7.21 \\$	91.12 90.79 89.48	$1.88 \\ 1.55 \\ 0.24 \\ 0.10 \\ $
ZO-SGD-Block	26	93.69	57.2	$\frac{16}{20}$	$\begin{array}{c} 18.98\\ 15.43\end{array}$	5.76 2.21	$89.42 \\ 89.27$	$\begin{array}{c} 0.18\\ 0.03\end{array}$
				24 (ZO-SGD)	13.22	0.00	89.24	0.00


Table 4: Comparison of ZO-SGD and ZO-SGD-Block with the same query budgets.

• **Study III:** Gradient pruning benefits performance.


COPA									
Sparsity (%) 0	10	20	30	40	50	60	70	80	90
Accuracy (%) 73.00	75.00	75.00	70.00	70.00	70.00	70.00	7.000	70.00	71.00
SST2									
Sparsity (%) 0	10	20	30	40	50	60	70	80	90
Accuracy (%) 90.83	91.51	92.20	92.32	91.74	92.43	92.43	92.20	91.51	92.66

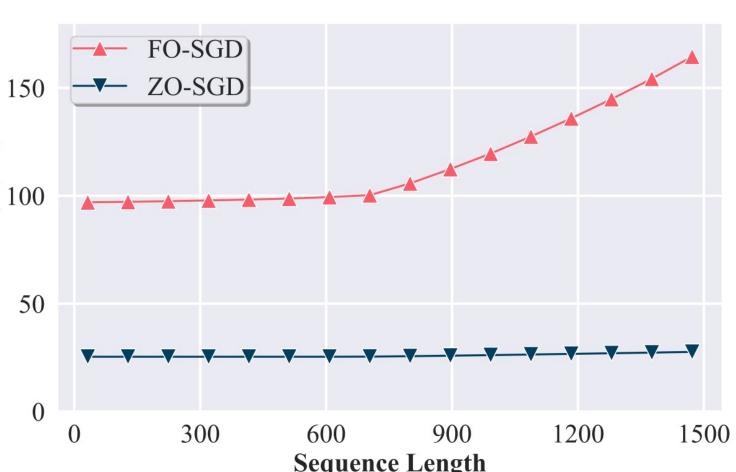

Table 6: Fine-tuning OPT-1.3B using ZO-SGD w/ different gradient sparse ratios.

Figure 2: Memory comparison across various sequence lengths.

• **Study I:** Block-wise ZO optimization enhances fine-tuning performance. • **Study II:** Performance and efficiency trade-off via hybrid ZO-FO training.

 Table 5: Trade-off between memory v.s.

 accuracy in hybrid ZO-FO fine-tuning.